
Adder

A half adder can add two bits. It has two inputs, generally labeled A and B, and two outputs, the sum
S and carry C. S is the two-bit XOR of A and B, and C is the AND of A and B. Essentially the output of
a half adder is the sum of two one-bit numbers, with C being the most significant of these two outputs.

A full adder is capable of adding three bits: two bits and one carry bit. It has three inputs - A, B, and
carry C, such that multiple full adders can be used to add larger numbers. To remove ambiguity
between the input and output carry lines, the carry in is labelled Ci or Cin while the carry out is
labelled Co or Cout.

1

http://en.wikipedia.org/wiki/Carry_(arithmetic)
http://en.wikipedia.org/wiki/AND_gate
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/Carry_flag
http://en.wikipedia.org/wiki/Sum

VHDL CODE
===
H_Adder.vhdl
===
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Hendra Kesuma

entity Half_Adder_ent is
 Port (A_Half : in std_logic;
 B_Half : in std_logic;
 S_Half : out std_logic;
 C_Half : out std_logic);
end Half_Adder_ent;

architecture Half_Adder_arch of Half_Adder_ent is
begin
 process(A_Half, B_Half)
 begin
 S_Half <= (A_Half xor B_Half);
 C_Half <= (A_Half and B_Half);
 end process;
end Half_Adder_arch;

2

 VHDL CODE
===
Full_Adder.vhdl
===
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Hendra Kesuma

entity Full_Adder_ent is
 Port (A_Full : in std_logic;
 B_Full : in std_logic;
 C_In : in std_logic;
 S_Full : out std_logic;
 C_Out : out std_logic);
end Full_Adder_ent;

architecture Full_Adder_arch of Full_Adder_ent is

component Half_Adder_ent
port(
 A_Half : in std_logic;
 B_Half : in std_logic;
 S_Half : out std_logic;
 C_Half : out std_logic);
end component;

 signal Wire1 : std_logic;
 signal Wire2 : std_logic;
 signal Wire3 : std_logic;

begin
 Half_Adder_1: Half_Adder_ent
 port map(
 A_Half => A_Full,
 B_Half => B_Full,
 S_Half => Wire1,
 C_Half => Wire2
);

 Half_Adder_2: Half_Adder_ent
 port map(
 A_Half => Wire1,
 B_Half => C_In,
 S_Half => S_Full,
 C_Half => Wire3
);

3

 C_Out <= (Wire3 or Wire2);

end Full_Adder_arch;

TESTBENCH CODE
===
tb_Full_Adder.vhd
===
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

-- Hendra Kesuma

ENTITY full_adder_ent_tb_Full_Adder_vhd_tb IS
END full_adder_ent_tb_Full_Adder_vhd_tb;

ARCHITECTURE behavior OF full_adder_ent_tb_Full_Adder_vhd_tb IS

COMPONENT full_adder_ent
PORT(

A_Full : IN std_logic;
B_Full : IN std_logic;
C_In : IN std_logic;
S_Full : OUT std_logic;
C_Out : OUT std_logic
);

END COMPONENT;

SIGNAL A_Full : std_logic;
SIGNAL B_Full : std_logic;
SIGNAL C_In : std_logic;
SIGNAL S_Full : std_logic;
SIGNAL C_Out : std_logic;

BEGIN

uut: full_adder_ent PORT MAP(
A_Full => A_Full,
B_Full => B_Full,
C_In => C_In,
S_Full => S_Full,
C_Out => C_Out

);

-- *** Test Bench - User Defined Section ***

4

 tb : PROCESS
 BEGIN
 A_Full <= '0' after 0 ns,
 '1' after 10 ns,

 '0' after 20 ns,
 '1' after 30 ns,
 '0' after 40 ns ;

 B_Full <= '0' after 0 ns,
 '1' after 5 ns,

 '0' after 10 ns,
 '1' after 15 ns,
 '0' after 20 ns,

 '1' after 25 ns,
 '0' after 30 ns,
 '1' after 35 ns,
 '0' after 40 ns;

 C_In <= '0' after 0 ns,
 '1' after 20 ns;

 wait; -- will wait forever
 END PROCESS;
-- *** End Test Bench - User Defined Section ***

END;

RTL Schematic

5

SIMULATION

RTL Schematic

6

